Stochastic Forecasting of Demographic Components Based on Principal Component
نویسندگان
چکیده
منابع مشابه
mortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولRobust Stochastic Principal Component Analysis
We consider the problem of finding lower dimensional subspaces in the presence of outliers and noise in the online setting. In particular, we extend previous batch formulations of robust PCA to the stochastic setting with minimal storage requirements and runtime complexity. We introduce three novel stochastic approximation algorithms for robust PCA that are extensions of standard algorithms for...
متن کاملSOM: Stochastic initialization versus principal components
Selection of a good initial approximation is a well known problem for all iterative methods of data approximation, from k -means to Self-Organizing Maps (SOM) and manifold learning. The quality of the resulting data approximation depends on the initial approximation. Principal components are popular as an initial approximation for many methods of nonlinear dimensionality reduction because its c...
متن کاملStochastic convex sparse principal component analysis
Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is importa...
متن کاملForecasting Using Principal Components from a Large Number of Predictors
This article considers forecasting a single time series when there are many predictors (N) and time series observations (T). When the data follow an approximate factor model, the predictors can be summarized by a small number of indexes, which we estimate using principal components. Feasible forecasts are shown to be asymptotically efficient in the sense that the difference between the feasible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Athens Journal of Sciences
سال: 2018
ISSN: 2241-8466
DOI: 10.30958/ajs.5-3-2